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Fig.4. Bond lengths observed in (@) TMPD.CIO4(RT), (b)
TMPD iodide and (¢) TMPD.CIO4LT). The values are
corrected for libration.
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I1. The Low-Temperature Phase
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Groningen, The Netherlands
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Crystals of the low-temperature modification of N,N,N’,N’-tetramethyl-p-diaminobenzene perchlorate
(TMPD.CIlO,) have monoclinic symmetry. The crystal structure is described in space group B2,/d.
The unit-cell data (in B2,/d) are at 110°K: a=11-655 (7), b=10-147 (8), ¢=20-130 (10) A, f=92-57
(2)°, Z=8. The a and ¢ axes are almost doubled in length compared with those of the orthorhombic
modification, space group Pnnm, existing above the transition point of 186°K. The mirror plane and
twofold axis which vanish when going from Pnnm to B2,/d are preserved as twinning elements. Because
of the twinning, difficulties were encountered during the intensity measurements. For two different
crystals it appeared to be possible, however, to obtain reliable intensities for 3014 and 2737 independent
reflexions respectively. The corresponding indices R are 0-093 and 0-103. The TMPD groups are arranged
in rows, the distances between the benzene planes are alternately 3-10 and 3-62 A. The bond lengths
show that the TMPD groups are present as TMPD*, This rules out the ‘mol-ionic’ lattice theory of
Pott & Kommandeur. The magnetic behaviour of TMPD.CIO,(LT) can be explained by the theory of
Soos based on exchange interaction.

Introduction

In the previous paper (de Boer & Vos, 1972; to be
referred to as dBV), the room-temperature (RT)
modification of TMPD . ClO, is described. The crystals
of the RT form are orthorhombic, space group Pnnm.
When cooling the crystals of TMPD.CIO, below the

transition point of 186°K, the symmetry is lowered
from orthorhombic to monoclinic (Thomas, Keller &
McConnell, 1963), and twinning of the crystals is
observed. The present paper deals with the low-tem-
perature study of TMPD.ClO,, the comparison with
the RT form, and the discussion of the magnetic
properties,
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Experimental

Preliminary work, twinning

A preliminary study of the change in symmetry of
the crystals during the phase transition was made by
use of Weissenberg photographs. The crystals were
cooled in a stream of cold nitrogen gas. The Weissen-
berg pictures showed that the LT form belongs to the
monoclinic space group P2,/c. Moreover it was ob-
served that in most cases quadruplets are obtained. To
compare the LT form of TMPD.CIO, with the RT
form, the LT modification can be described best in the
centred space group B2,/d rather than in the non-
centred group P2,/c. The mirror plane (001) and the
twofold axis [001] of the RT form which are not pres-
ent in the LT space group, are preserved as twinning
elements in the LT crystals. In the observed quadruplets
twinning across (001) is present to a considerably
larger extent than twinning around [001]. The relative
orientation of the four individuals is given in Fig. I.
In the LT modification the @ and the ¢ axes are approxi-
mately twice as long as in the RT form (see also Thomas
et al. (1963); in their Fig. 2. II the translation compo-
nent of the glide plane d should be along their direction
[170] rather than along [110]).

Preparation of the crystals

For the determination of the cell dimensions and the
collection of the intensities, use was made of an auto-
matic three-circle Nonius diffractometer. The crystals
were again cooled in a stream of cold nitrogen gas (for
equipment used, see van Bolhuis, 1971). In addition
to the quadruplet formation we observed a strong
increase in mosaic spread when cooling the crystals
below the transition point. It was therefore difficult to
obtain good crystal specimens for the intensity meas-
urements. It appeared to be of great help to observe
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Fig. 1. Relative orientation of the individuals in a quadruplet.
Except for individual 1V, b* points downwards. The devia-
tion of B from 90° is exaggerated by a factor of 2.
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Py

c1 0

Fig.2. k-level of reciprocal lattice for a crystal twinned about
the RT mirror plane. b* points downwards. The reflexions
of the individuals I and II are represented by @ and O
respectively.

that the presence of individuals III and IV could
largely be suppressed by cooling the crystals rapidly.
After many attempts we obtained two crystals with a
negligible amount of individuals III and IV and with a
reasonably small, although anisotropic, mosaic spread
(maximal 1-7 and 1-2° for crystals 1 and 2 respective-
ly). These crystals were used for the intensity meas-
urements. The arrangement of the reflexions of the
twinned crystals in reciprocal space is shown in Fig. 2.
In order to minimize overlap effects for neighbouring
reflexions (see under intensity measurements), the
crystals were mounted along b.

Crystal data

The cell constants were determined at 110°K. For
space group B2,/d the values are a=11-655 (7), b=
10-147 (8), ¢=20-130 (10)A, B=92-57 (2)°. The
density of the crystals at 110°K is 4:2% higher than
at room temperature. The systematic absences for
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Fig. 3. Difference in w for two ‘neighbouring’ reflexions. The
difference in length of S; and S; gives (dw) =60,-6,. In
addition to this there is a w difference of (dw)”’ =4"¢px~

(¢2-91) cos X(x2+ x1), where x; and x are the y values of the
two reflexions.

B2,/d are: hkl absent for h-+I+#2n, h0l absent for
h+1#4n and 0kO absent for k #2u, the latter relation
was verified by using different mountings of the crystal
and Cu as well as Mo radiation.

Intensity measurements

The intensity measurements were made at 110°K.
For each twin of the two crystals used, all independent
reflexions with sin §/A<0-746 A~! were measured
with Zr-filtered Mo radiation. In view of the magnitude
of the mosaic spread of the crystals, the w-scan
technique was applied.

When processing the data it had to be decided
whether or not the intensities obtained for two neigh-
bouring reflexions (say P and Q in Fig. 2) were in
error owing to overlap effects. To this end we calculated
the reflection distance g=0,—0,+[p(b)—¢,(b)] cos x
(see Fig. 3). For |g| larger than the scanning angle, the
reflexions were considered as free. For the free reflex-
ions, the factor K=23 I(hkl;1)/> I(hkl;1I) was calcula-
ted (summation over intensities measured for both
twin individuals). The factor appeared to be approxi-
mately the same for the two crystals considered, viz.
0-774 for 1 and 0-794 for 2.

The non-interfering reflexions were further used to
determine the heights of the backgrounds as a function
of 6. This information is essential for the analysis of a
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second series of reflexions. This series is composed of
pairs of reflexions for which the peak position (M) of one
of the reflexions (P say) coincides with a background
position of the other (Q say). The intensity measured
at M is thus I(M)=I(peak P)+ I(background Q). For
I(M) equal to the expected value for the background
cf Q, within experimental error, the reflexion P was
considered as unobservable and the intensity measured
for Q could be regarded as being undisturbed by P.

Finally the intensities could be calculated for com-
pletely or nearly completely coinciding reflexions. This
can be understood as follows. At the positions 4 and B
in Fig. 2 are obtained the intensities I(4)=I(hkl,;1)+
I(hk L 1) = IRk ;1) + I(hk D, ;1)K and I(B)=1(hkl;;T)]
K+ I(hkly;1). From I(A) and I(B) both I(hkl;])
and I(hkl,;I) can be calculated owing to the fact
that the factor K is not unity. When the coinciding
reflexions are equivalent, as is for instance the case for
the reflexion pair (0k/;I) and (0k/;1I), measurement of
I(B) has been omitted and the intensity I(hkl;;1)=
I(hkl,;1) is obtained from the equation I(hk/;I)=
I(4) K/(K+1).

Processing of the data by the methods described
above gave 2737 reliable intensities for crystal 1 and
3014 reliable intensities for crystal 2. The explored part
of the reciprocal space contained approximately 4100
independent reflexions. When calculating F, values
from the collected intensities, Lorentz and polarization
effects were taken into account; no absorption cor-
rections were applied.

Structure determination

As mentioned above, the a and ¢ axes of the B-centred
cell of the LT form are approximately twice as long
as the corresponding axes of the primitive cell of the RT
form. Because of this the LT reflexions may be sep-
arated into two groups. First, the reflexions with 4 (and
therefore also /) even (‘even’ reflexions) which are
observed also for the RT form, and secondly the
reflexions with 4 and / odd (‘uneven’ reflexions) which
do not occur at room temperature. We observed that
the intensities of the even reflexions are, on the average ,
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Fig.4. The RT structure (@) and the two models derived from it for the LT structure (b + ¢). Only ions lying athwart z=0are given.
TMPD groups are represented by straight lines and ClO4 groups by triangles, Intersecting triangles indicate disorder of the

Cl0O4 groups.
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a factor 3 larger than those of the uneven reflexions;
moreover the even reflexions appeared to show a
reasonable similarity with the data of the RT modifica-
tion. From this information we concluded that the LT
and RT structures are fairly similar and that only
moderate atomic displacements accompany the phase
transition.

Fig. 4(a) shows that at room temperature the in-
version centres in the a direction are occupied alternate-
ly by TMPD groups. In the LT form where the a axis
is twice as long as in the RT form, one half of the in-
version centres is missing and it had to be decided
whether the occupied or the free centres disappear dur-
ingthe phase transition. In the first case the eight TMPD
groups in the unit cell of the LT form lie at general
positions, so that there is only one independent group
in the cell [Fig. 4(b)]. In the second case the TMPD
(and also the ClO,) groups lie at inversion centres,

Table 1. Final parameters

(a) Coordinates x, y, z obtained for crystal 2 with calculated stan-
dard deviations, and average values xa, ya,zs of the coordinates
obtained for crystals 1 and 2. All values are multiplied by 104,

MODIFICATIONS OF WURSTER’S BLUE PERCHLORATE. II

Fig.5. Projection of the ClO4 group onto the O(2)-CI-O(4)
plane. P[O(2)] and P[O(4)] make angles of 184 and 1-7°
respectively with this plane, their angles with the respective
Cl-O bonds are indicated in the Figure.

which implies that the cell contains two independent
centrosymmetric TMPD groups and that the ClO,
groups are disordered [Fig. 4(c)]. Structure-factor cal-
culations showed the model of Fig. 4(b) to be presum-
ably correct, which was subsequently confirmed
during the refinement of the structure.

In the model of Fig. 4(b) the centre of the independent
TMPD group is placed at (100), by analogy with the
RT structure. To check how far in the LT form the
TMPD group is shifted from this position, an aniso-
tropic least-squares refinement [minimization of > (F,—
kF.Y] was done with the even reflexions. The RT

X y z Xa Ya Za . .
Cl 7534 (1) 5088 (1) —46(1) 7534 5087 —46 parameters were useq as a starting point. From the
Cc(1) 3086 (3) 487 (3) 705(1) 3087 487 704 large U,, values obtained for both N and C, we con-
ggg %%(5)3 8; —gg? 8; —igg g; gggg —3(9)(1) —45“1)2 cluded that the TMPD group as a whole had to be
C) 2120(3) —294(3) 680(2) 2130 —292 682 shifted some 0-3 A along a. A structure-factor calcu-
C(5)  3655(2) 835(3) 117(2) 3656 835 117 lation including both the even and uneven reflexions
C(6) 1667 (3) —813(3) 66(2) 1668 —8I5 67 showed that the TMPD group at (300) had to be
g(;) 4322 (g) g%gg (44l) 76; (;) 4337 gillg(l) ;gg shifted towards (300). Further refinement could be
CE9§ 5043 8 —2208 E4; :ng EZ; 504; _2207 —4s5 done in a routine way. The positions qf all mdependqnt
C(10) 118 (3) —1893 (4) 645(2) 116 —1893 645 H atoms could be found from a difference Fourier
N(1) 4567 (2) 1653 (3) 144 (1) 4567 1653 143 map, and their parameters were refined isotropically.
gg; 72;{ g; —éigg 8; f/‘é 8; 72;(1) - éigi ‘;é The scattering factors for hydrogen were taken from
O(2)  8557(5) 4633 (5) —323 (3) 8354 4631 —323 Stewart, Davidson & Simpson (1965), and those of the
O(3)  7345(3) 4390 (4) 561(1) 7345 4394 561 Other atomsfrom Doyle & Turner (1968). Independent
O(4) 6572 (5) 4903 (5) —504 (2) 6567 4904 —s03 refinements were done for crystal 2 and crystal 1. All
Table 1 (cont.)
(b) Final thermal parameters Ui;(in 10-4 A2) for crystal 2. The temperature factor is exp[ — 2n2(h2a*2Uy; + . . . . . +2ha*kb* Uy,
+.on.
. Un Uz Us; 2U12 2Uz; 2013

Cl 322 (4) 173 (3) 145 (3) —-20(6) 11 (5) 46 (5)

C(1) 199 (13) 156 (12) 128 (12) - 20 (20) —26 (20) 25 (19)

C(2) 175 (13) 212 (14) 131 (12) 6 (21) —54 (21) 2 (19)

C@3) 168 (13) 195 (14) 128 (12) 0 (20) 63 (20) 6 (18)

C4) 188 (13) 162 (13) 150 (12) -5 (20) —14 (20) 45 (19)

C(5) 144 (13) 161 (12) 166 (12) 17 (19) 14 (20) 0(18)

C(6) 158 (13) 165 (13) 154 (12) 16 (19) 24 (20) 11 (18)

C(N 256 (16) 259 (16) 197 (14) —95 (25) —113 (25) —25(22)

C(8) 234 (15) 285 (17) 232 (15) —144 (25) —-73 (26) —13 (23)

C(9) 235 (15) 267 (16) 205 (14) —175 (24) 66 (25) 63 (22)

C(10) 229 (15) 295 (17) 230 (15) —120 (25) 18 (26) 103 (23)

N(D) 187 (12) 164 (11) 160 (11) —40 (18) 2 (19) —10(17)

N(2) 183 (12) 191 (12) 161 (11) 7 (18) 17 (19) 33(17)

o(l) 468 (18) 229 (14) 520 (20) —134 (24) —170 (27) —25(28)

0(2) 1170 (38) 743 (32) 949 (36) 1304 (59) 968 (57) 1647 (64)

0@3) 357 (15) 507 (19) 227 (13) —56 (26) 296 (26) 120 (21)

04) 1273 (39) 586 (27) 605 (27) —1030 (53) 485 (44) — 1325 (54)
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Table 1 (cont.)

(¢) Coordinates of the hydrogen atoms ( x 104) and parameters
B(in A2) for crystal 2

X y z B
H(1) 338 (3) 874 112 (2) 0-4 (6)
H(2) 203 (3) —86 (4) =97 (2) 1-0 (7)
H(3) 364 (4) 39 (5) -89 (2) 26 (10)
H(4) 177 (3) —47 (4) 109 (2) 1-0 (7)
H(5) 492 (4) 178 (5) 111 (2) 2-1 (9)
H(6) 571 (3) 275 4) 77 (2) 1-2 (8)
H(7) 450 (4) 283 (5) 88 (3) 2-6 (10)
H(8) —38(4) —271 (5) —46 (3) 3-2(11)
H(9) -1 — 138 (6) —-91 (3) 36 (12)
H(10) 96 (5) —291 (6) —-74 (3) 50 (14)
H(11) 586 (4) 241 (5) —-38(2) 2:3 (10)
H(12) 512 (4) 143 (6) —-83(3) 39 (12)
H(13) 448 (4) 303 (6) —-62(3) 4-0 (12)
H(14) 12 (4) —131(5) 93 (2) 2:5 (10)
H(15) —47 (4) —238(5) 49 (2) 2:2(9)
H(16) 54 (3) —-249 (4 89 (2) 1-5 (8)

reflexions were given equal weight. The index Rdropped
to 0-093 for the 3014 reflexions of crystal 2 and to
0-103 for the 2737 reflexions of crystal 1. The final
coordinates of the two refinements are equal within
experimental error [Table 1(@)]; the standard devia-
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Fig.6. Structure of TMPD.CIO4«LT). (a) [010] projection.
Groups around y=1% and around y=0 are drawn with bold
and thin lines respectively. (b) [001] projection onto the
a*-b plane of three successive groups in the TMPD row along
the a axis. (¢) projection of these groups along the normal
of the best plane through a benzene ring.
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tions for 2 are slightly smaller than for 1. In Table 2
the F, and F, values of crystal 2 are compared. The
intra- and inter-molecular distances and angles given
in this paper are based on the average coordinates
XaYar Za given in Table 1(a). The analysis of the thermal
motion in the next section is based on the U;; values of
crystal 2 [Table 1(b)].

Analysis of the thermal parameters; disorder of the ClO,
group

For the ClO, group, the principal axes (P, Q and R)
of the temperature ellipsoids of the individual atoms
are given in Table 3(a). We see that especially P[O(2)]
and P[O(4)] are very large. It appears that P[O(2)] and
P[O(4)] lie approximately in the plane defined by O(2),
Cl and O(4). Their directions in this plane are given in
Fig. 5. The large values obtained for the thermal param-
eters indicate that in the LT form the ClO, groups are
still disordered to some extent. From Fig. 5 it can be
deduced that there is rotational disorder, approxi-
mately around the axis D perpendicular to the plane
through O(2), Cl and O(4). Geometrical considerations
based on the model of the structure given in Fig. 6,
have shown that there is space for the required large
displacements of O(2) and O(4). On the basis of the
X-ray experiment it cannot be decided to what extent
the disorder of the ClO, groups is static or dynamic.

An analysis according to Pawley (1963) showed that
the thermal parameters of the ‘heavy’ atoms of the
TMPD group can be interpreted as being due to the
rigid-body movement given in Table 4, (U, (0)—
U ()F/a*[U,(0)])*=1-05. By analogy with the results
obtained for the TMPD group in TMPD. CIO4RT), it
appears that the axes p and p’ for which T and o are
largest, approximately coincide with each other and
with the smallest axis of inertia of the molecule. There
is no indication of disorder of the TMPD groups in
the structure. It can therefore be assumed that all
TMPD groups have the same electric charge, since
differences in charge would result in varying orienta-
tions of the groups and thus in disorder.

Description of the structure

The [010] projection of the LT structure is given in
Fig. 6(a). As mentioned before (see Fig. 4), the LT
structure is strongly analogous to the RT structure. In
both structures the TMPD groups are packed in rows
which have little mutual interaction. The short-
est C--.-C distance between different rows in
TMPD.CIO,LT) is 3-58 A. In the RT structure and
in TMPD iodide this distance is 3-73 and 3-53 A respec-
tively.

Apart from the fact that in the LT structure the
disorder of the ClO4 groups is much smaller than in
the RT structure, an important deviation from the RT
structure is found in the stacking of the TMPD groups
along a. Whereas the TMPD groups in TMPD iodide
andin TMPD.CIO,(RT) are equidistant (at distances of



844 MODIFICATIONS OF WURSTER’S BLUE PERCHLORATE. 1I

Table 2. Observed and calculated structure factors

The columns are [, | Fo|, Fe. The values are on 10 times the absolute scale.
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Table 2 (cont.)
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Table 3. Vibrational parameters and geometry of the
ClO, group

(a) Principal axes P, Q and R (in 10-4 A2) with direction cosi-
nes ( x 103) relative to a*, b and c.

323 997 —63 45
174 52 975 216
R 143 —58 —~214 975
P[O(1)] 544 —244 —195 950
Y 484 —-936 304 —178

188 254 933 257
2233 689 470 551

352 34 —1781 624
R 208 724 —411 —554
P[OQ3)] 571 —40 920 389
Qo 370 -971 57 —234
R 146 —238 —387 891
PO 1989 778 —380 —501
0 369 —131 —-877 462
R 170 615 294 732

P(Cl)
Q

R
PIOQ2)]
Q

(b) Bond lengths and valence angles. The standard deviations
are 0-002 A and 0-2° respectively
1-422 O(1)-C1-0(2)
1-414 0(1)-CI-0(3)
1-436 O(1)-Cl-0(4)
1-433 A 0(2)-C1-0(3)
0(2)-C1-0(4)

0(3)-Cl-0(4)

109-1
110-4
107-0
109-8
110-9
109-7°

Cl-0(1)
Cl-0(2)
Cl-0(3)
Cl-0(4)

Table 4. Rigid-body analysis of the TMPD group

Principal axes of the T (in 10-4 A2) and o (in 10-4 rad?) tensors

with direction cosines relative to XYZ (X along a*, Y and Z

along b and ¢ respectively). The position of the libration centre

measured from the centre of gravity of the molecule is X'=0-24,
Y=-002, Z=0-04 A.

T(p) 177 0-803

T(q) 111 —0-583

T(r) 129 0-128

—0-008
—0-224
—-0:975

0-597
0-781
~0-184

—0-018
—0-083
—0-996

0-829
—0-558
0-031

0-559
0-826
—-0-079

o(p’) 44
o(g’) 1
o(r’) 11

0. 1.t
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6 183 168 13 184 184 13
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3-38 and 3-55 A respectively; dBV, Fig. 2), alternating
distances occur in TMPD.CIO,LT) [Fig. 6(b)]. The
interplanar gaps are alternately 3-10 and 3-62 A [Fig.
6(¢c)]. It is seen that the sidesteps in the row of molecules
are largest where the interplanar distances are smallest.
Owing to this the difference between the intermolecular
N. - -N distances around (0,0,0) and (4,0,0) is smaller
than the difference between the interplanar distances.
A further reduction of the difference in N---N dis-
tances occurs due to the flexing of the molecule [Fig.
7(a)]. In fact we see that the sidesteps and the bending
of the molecules are such that the N---N distances
are equal, despite the rather unequal interplanar
spacings between successive molecules in a row. The
relatively large sidestep between the molecules having
the smallest interplanar separation which contributes
in making the N- - - N distances equal, causes the methyl
carbon atoms C(9) and C(7) to become close to a carbon
and a hydrogen atom respectively of the neighbouring
molecule. Evidently because of this C(9) and C(7) are
pushed far out of the benzene plane of the molecule
[Fig. 7(a)].

In view of the discussion given above it is not sur-
prising that the conformation of the TMPD group has
changed during the phase transition. In the LT form
it has lost its former 2/m symmetry. As is seen from
Fig. 7(b) the reduction in symmetry is not reflected by
the bond lengths and only to a slight extent by the bond
angles.

The bond lengths and angles in the ClIO, group are
given in Table 4(b). The average CI-O distance
(1426 A) lies close to Sutton’s (1965) value of
1-43 (2) A, and the largest deviation of a bond angle
from the tetrahedral value of 109-5° is 2-5°, Not too
much significance should be attached to this deviation
because of the disorder of the CIO, groups mentioned
above.
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The twinning of the crystals

As has been discussed before, the reduction in sym-
metry occurring during the phase transition causes
twinning of the crystals. Now that both the low and
room temperature stiuctures are known, a better in-
sight into the twinning can be obtained. Comparison of
the room- and low-temperature structures given in
dBV [Fig. 2(a)] and in Fig. 6(b), shows that, in rough
approximation, the relative arrangement of the TMPD
groups observed at room temperature is preserved in
the low-temperature form for the two neighbouring
groups related by the inversion centre at (0,0,0). In
the discussion which follows this pair of molecules is
therefore considered as a rigid unit U and the changes
occurring in the TMPD rows during the transition
are described in terms of replacements of the units U
relative to each other. The ClO, ions are not considered
in this paragraph. Fig. 6(a) shows that in the projection
along the b axis all C(ring)-N bonds of U approxi-
mately lie on one line. In Fig. 8 the units are depicted
schematically in [010] projection. Remember that at
room temperature the N-N lines of all the molecules lie
in the mirror planes perpendicular to ¢(RT). During
the transition the rearrangement of the units U (apart
from a contraction in the a direction which brings them
closer together) can occur in two ways.

1. N-N remains perpendicular to ¢(RT) but succes-
sive units in the a direction show slight displacements
relative to each other in the ¢ direction. This is shown
in Fig. 8(upper part). The sign of the shift is differ-
ent for the left- and right-hand side of the Figure, which
results in twinning around [001]. The two twin individ-
uals share the ¢ axis, which is a twofold axis at room
temperature, and correspond with the individuals III
and IV in Fig. 1.

2. The units U rotate over about [90°-f} around
their centre [Fig. 8(lower part)] and successive rows
in the ¢ direction shift along a, to bring ¢(LT) perpen-
dicular to N-N. Since the sign of the rotation is differ-
ent for the upper and lower parts of the Figure twin-
ning across (001) occurs. The two individuals share the
(a,b) plane, which is a symmetry plane at room tem-
perature, and correspond with the individuals I and I1
in Fig. 1.

Both displacements discussed above give rise to
disorder at the boundaries where twin-individuals
meet. This disorder, schematically drawn in Fig. 8, is
largest for the twinning around [001). This presumably
explains our observation that twinning around [001]
is present to a considerably smaller extent than twin-
ning across (001).

Discussion

The discussion on the TMPD groups given in dBV has
shown that the TMPD groups in TMPD.CIO(LT),
aswellas in TMPD iodideand in TMPD . ClO,(RT), are
present as TMPD*, Whereas for TMPD iodide and
TMPD. CIO4«(RT) this could be anticipated from the
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magnetic behaviour, this is not the case for
TMPD.CIO,(LT) and therefore various proposals con-
cerning the electric charges of the TMPD groups in
TMPD.CIO,(LT) have been made (see Introduction
of dBV). The observation that the TMPD groups are
present as TMPD™, convincingly rules out the mol-
ionic lattice theory of Pott & Kommandeur (1967),
which assumes TMPD.CIO4(LT) to contain TMPD?*
and TMPD°®. The disproportionation mechanism
proposed by Pott & Kommandeur, has also been
rejected by Sakata & Nagakura (1970) on the basis of
spectral data.

The marked drop in the magnetic susceptibility
below the transition point must be due to some kind
of coupling between the unpaired electrons on the
TMPD™ groups. For the way this coupling is achieved
two theories are found in the literature. Firstly there
is the model of Soos (1965) which is based on exchange
interaction between organic radicals that are stacked
in rows. This theory makes use of the Hamiltonian

c(1) -0011 A
c(2) -0009
C(3) -0002
c(4) =0000
c(s) 0012
c(6) 0010
N(1) 0063
c(7) 0194
c(9) 0320
N(2) 0056
c(8) -0053
C(10) 0052

(a)

c®) c@® g3 €@ cla)

1217,
clw) cl)y 138 cpy <

(®)

Fig.7. The TMPD group in TMPD. CIO4(LT). (a) The TMPD
group seen along a line in the benzene plane perpendicular
to C(5)-C(6), with distances to the best benzeie plane
(equation —0-5824X+0-8064Y—0-1029Z=—1-813 A; see
bold line). Angles between C(ring)-N bonds and adjacent
planes are indicated. N(1} lies at a distance of 0-105 A from
the plane through its three surrounding C atoms, the corres-
ponding value for N(2) is 0-053 A. (b) Bond lengths and
valence angles (libration corrections not applied). The calcul-
ated standard deviations for the bond lengths and angles are
0-003 A and 0-2° respectively.
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for the linear Heisenberg (anti) ferromagnet and results
in a band structure for the different spin states. The
exchange integral used is defined phenomenologically
and includes charge-transfer effects in addition to the
usual Heisenberg exchange (Soos & Hughes, 1967).
The second theory, developed by Fedders & Kom-
mandeur (1970), denies the importance of exchange
effects. In this theory a ‘narrow* band model’ is ob-
tained by the use of one-electron molecular orbital
methods and the Bloch theorem.t Here the coupling
between the electrons originates from the fact that
many of them have to be placed in the same band(s).

Before applying the theories to TMPD.ClO, a com-
ment should be made on the differences occurring be-
tween the y values of the LT modification as reported
by different authors (Pott, van Bruggen & Komman-
deur, 1967, Fig. 1; Soos & Hughes, 1967, Fig. 3; this

* To be understood as narrow compared with band widths
in metals.

+ A similar description has recently been given by Strebel
& Soos (1970) for aromatic donor—acceptor crystals containing
rows in which D and 4 molecules alternate.

C—0C——06—03—0—3—0C—C—0C—0
0—00—%0—00—p—o O\O O0—c0—00—0—90—9
C——00c—03—0 a O\o oc—@—0G—0—90

L 0
O—b—00——o0 HO\OO_QHO_O o—O—0

awn o

06— 06— g0 —c—00—F—0C—0"
0—00—o—00—<p—o O/OO_LO——QHO_‘OO—‘O

C——0C—0r—o . /3\ /Jc_oc—oc—o“f—o

Fig.8. Schematic representation of the twinning. Upper part:
around [001]. Lower part: acrossi001). Neighbouring TMPD
groups related via the inversion centre (0,0,0) [see Fig. 7(a)}
are represented as a unit U. The circles correspond with the
positions of the nitrogen atoms. Shaded groups lie athwart
y=1% and unshaded ones at y=0.
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Figure is reproduced in the present paper as Fig. 9).
We associate the spread in the observed y values with
our observation that the mosaic spread, especially in
the LT phase, varies substantially (sometimes as much
as 1:5°) from one crystal to another, indicating strong
variations in the number of defects in the crystals.
Moreover distinct differences in the twinning of the
crystals appeared to occur. That the magnetic proper-
ties of the crystals depend on their twinning was con-
firmed by the finding that crystals showing complex
twinning have a relatively high paramagnetism at low
temperature. The magnetic measurements were made
by Vegter (1968). We are therefore inclined to ascribe
the discrepancies between the experimental y curves
below the transition point to imperfections which are
presumably not of a chemical but of a crystallographic
nature, and expect that the relatively high y values
measured by Duffy (1962) are obtained from relatively
imperfect crystals.

Fig. 9 shows that application of Soos’s theory to
TMPD.CIO, gives good agreement between calculated
and experimental y values. It must be noticed that for
the low-temperature range a still better fit can be
achieved by assuming that the exchange integral J
increases with decreasing temperature as this gives the
calculated curve a steeper slope. That such an assump-
tion is reasonable can be deduced from the experiments
of Sakata & Nagakura (1969) who observed a large
increase of the intensity of the charge transfer band
with decreasing temperature. This suggests that, con-
ditioned by gradual structural changes, the interaction
between the radicals, and therefore J, increases with
decreasing temperature.

When applying the theory of Fedders & Komman-
deur (FK) we made use of the overlap integrals cal-
culated by Tanaka & Mizuno (1969) and the transfer
integrals (for definition, see FK, 1970) calculated by
van Zorge (1970). From these integrals we estimated
the width of the one band occurring in the room-tem-
perature phase at E,/k=570°K. In the LT modifica-
tion there are, because of the alternation in the rows,
two bands. For each band a width E,/k=575°K was
calculated, whereas for the band gap the value E /k =
2300°K was found for the crystal structure determined
at 110°K. When explaining the observed x(T) curve
with these values difficulties arise, however. Firstly,
although the large LT band gap does explain the steep
slope in the y(T) curve, it is not in accordance with the
fact that its value is as high as approximately 6 x 10~
e.m.u./mol. Secondly, the y values of the RT form obey
the Curie-Weiss relation y= C,/(T+36) (Duffy, 1962),
indicating that in this modification the coupling be-
tween the electrons on the TMPD* groups is small,
which is not expected for a band having a width large
in comparison with the temperature (570°K compared
with 186 < T<300°K). In agreement with FK, one
could enhance the susceptibility by assuming that the
band is disturbed by irregularities due to the lattice
vibrations, but it is not reasonable to assume that the



848

vibrations in the considered temperature range would
destroy a band of width 570° almost completely.

From the discussion given above we conclude that
the theory given by Soos is much more appropriate
to explain the y(T) curve of TMPD.CIO, than the
theory of Fedders & Kommandeur. This is not sur-
prising, since electron spin resonance experiments by
Thomas, Keller & McConnell (1963) have shown that
the exchange interaction in TMPD.CIO,, neglected
in the narrow-band model, is considerable (the singlet-
triplet separation is 246 + 20 cm~1). On the other hand,
the narrow-band model gives the best results for com-
pounds like DPPH (diphenylpicrylhydrazyl) or PAC
(picrylaminocarbazyl) for which the exchange inter-
action is small (Pake, 1962). It would be interesting to
know whether the assumption of the theory that the
organic radicals are arranged in rows, holds for DPPH
and PAC. Structure investigations of these compounds
by X-ray diffraction are, therefore, being made in our
laboratory.

The authors thank Professor Kommandeur, Profes-
sor Nieuwpoort and Dr J. G. Vegter for valuable dis-
cussions. We are grateful to Dr R. B. Helmholdt for
his contribution to the computer programs necessary
to interpret the intensity data and to Dr B. C. van Zorge
for performing theoretical calculations. All computa-
tions were done with the kind assistance of the staff
in the Computing Centre of the University of Gronin-
gen,
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